$\displaystyle\int\frac{1}{2}ε_0\hat{E}(r)\hat{E}(r)\ d^3r$
$=\displaystyle\int\frac{1}{2}ε_0\ i\biggl(\frac{1}{2π}\biggr)^{\frac{3}{2}}\biggl[\displaystyle\int\displaystyle\sum^2_{σ=1}\sqrt{\frac{ℏω_k}{2ε_0}}e_{kσ}(\hat{a}_{kσ}e^{ik・r}-\hat{a}^\dagger_{kσ}e^{-ik・r})\ d^3k\biggr]
\ i\biggl(\frac{1}{2π}\biggr)^{\frac{3}{2}}\biggl[\displaystyle\int\displaystyle\sum^2_{σ^´=1}\sqrt{\frac{ℏω_{k^´}}{2ε_0}}e_{k^´σ^´}(\hat{a}_{k^´σ^´}e^{ik^´・r}-\hat{a}^\dagger_{k^´σ^´}e^{-ik^´・r})\ d^3k^´\biggr]\ d^3r$
$=\displaystyle\frac{1}{2}\biggl(\frac{1}{2π}\biggr)^3\displaystyle\int\int\int\displaystyle\sum^2_{σ=1}\displaystyle\sum^2_{σ^´=1}\frac{ℏ}{2}\sqrt{ω_kω_k^´}e_{kσ}・e_{k^´σ^´}
\ \biggl[-\hat{a}_{kσ}\hat{a}_{k^´σ^´}e^{i(k+k^´)・r}+\hat{a}_{kσ}\hat{a}^\dagger_{k^´σ^´}e^{i(k-k^´)・r}
+\hat{a}^\dagger_{kσ}\hat{a}_{k^´σ^´}e^{-i(k-k^´)・r}-\hat{a}^\dagger_{kσ}\hat{a}^\dagger_{k^´σ^´}e^{-i(k+k^´)・r}\biggr] d^3k\ d^3k^´\ d^3r$
$=\displaystyle\frac{1}{2}\displaystyle\int\int\displaystyle\sum^2_{σ=1}\displaystyle\sum^2_{σ^´=1}\frac{ℏ}{2}\sqrt{ω_kω_k^´}e_{kσ}・e_{k^´σ^´}$
$\displaystyle \biggl[-\hat{a}_{kσ}\hat{a}_{k^´σ^´}\biggl(\frac{1}{2π}\biggr)^3\int e^{i(k+k^´)・r}d^3r+\hat{a}_{kσ}\hat{a}^\dagger_{k^´σ^´}\biggl(\frac{1}{2π}\biggr)^3\int e^{i(k-k^´)・r}d^3r
+\hat{a}^\dagger_{kσ}\hat{a}_{k^´σ^´}\biggl(\frac{1}{2π}\biggr)^3\int e^{-i(k-k^´)・r}d^3r-\hat{a}^\dagger_{kσ}\hat{a}^\dagger_{k^´σ^´}\biggl(\frac{1}{2π}\biggr)^3\int e^{-i(k+k^´)・r}d^3r\biggr] d^3k\ d^3k^´$
$=\displaystyle\frac{1}{2}\displaystyle\int\int\displaystyle\sum^2_{σ=1}\displaystyle\sum^2_{σ^´=1}\frac{ℏ}{2}\sqrt{ω_kω_k^´}e_{kσ}・e_{k^´σ^´}
\displaystyle \biggl[-\hat{a}_{kσ}\hat{a}_{k^´σ^´}δ(k+k^´)+\hat{a}_{kσ}\hat{a}^\dagger_{k^´σ^´}δ(k-k^´)
+\hat{a}^\dagger_{kσ}\hat{a}_{k^´σ^´}δ(k-k^´)-\hat{a}^\dagger_{kσ}\hat{a}^\dagger_{k^´σ^´}δ(k+k^´)\biggr] d^3k\ d^3k^´$
$=\displaystyle\frac{1}{2}\int\sum^2_{σ=1}\frac{ℏω_k}{2}
\displaystyle \biggl[\hat{a}_{kσ}\hat{a}_{-kσ}+\hat{a}_{kσ}\hat{a}^\dagger_{kσ}
+\hat{a}^\dagger_{kσ}\hat{a}_{kσ}+\hat{a}^\dagger_{kσ}\hat{a}^\dagger_{-kσ}\biggr] d^3k$
$\displaystyle\int\frac{1}{2}ε_0\hat{B}(r)\hat{B}(r)\ d^3r$
$=\displaystyle\int\frac{1}{2μ_0}\ i\biggl(\frac{1}{2π}\biggr)^{\frac{3}{2}}\biggl[\int\sum^2_{σ=1}\sqrt{\frac{ℏ}{2ε_0ω_k}}k×e_{kσ}(\hat{a}_{kσ}e^{ik・r}-\hat{a}^\dagger_{kσ}e^{-ik・r})\ d^3k\biggr]
\ i\biggl(\frac{1}{2π}\biggr)^{\frac{3}{2}}\biggl[\int\sum^2_{σ^´=1}\sqrt{\frac{ℏ}{2ε_0ω_{k^´}}}k^´×e_{k^´σ^´}(\hat{a}_{k^´σ^´}e^{ik^´・r}-\hat{a}^\dagger_{k^´σ^´}e^{-ik^´・r})\ d^3k^´\biggr]\ d^3r$
$=\displaystyle\frac{1}{2μ_0}\biggl(\frac{1}{2π}\biggr)^3\int\int\int\sum^2_{σ=1}\sum^2_{σ^´=1}\frac{ℏ}{2ε_0}\sqrt{\frac{1}{ω_kω_k^´}}(k×e_{kσ})(k^´×e_{k^´σ^´})$
$\biggl[-\hat{a}_{kσ}\hat{a}_{k^´σ^´}e^{i(k+k^´)・r}+\hat{a}_{kσ}\hat{a}^\dagger_{k^´σ^´}e^{i(k-k^´)・r}
+\hat{a}^\dagger_{kσ}\hat{a}_{k^´σ^´}e^{-i(k-k^´)・r}-\hat{a}^\dagger_{kσ}\hat{a}^\dagger_{k^´σ^´}e^{-i(k+k^´)・r}\biggr] d^3k\ d^3k^´\ d^3r$
$=\displaystyle\frac{1}{2μ_0}\int\int\sum^2_{σ=1}\sum^2_{σ^´=1}\frac{ℏ}{2ε_0}\sqrt{\frac{1}{ω_kω_k^´}}(k×e_{kσ})(k^´×e_{k^´σ^´})$
$\displaystyle \biggl[-\hat{a}_{kσ}\hat{a}_{k^´σ^´}\biggl(\frac{1}{2π}\biggr)^3\int e^{i(k+k^´)・r}d^3r+\hat{a}_{kσ}\hat{a}^\dagger_{k^´σ^´}\biggl(\frac{1}{2π}\biggr)^3\int e^{i(k-k^´)・r}d^3r
+\hat{a}^\dagger_{kσ}\hat{a}_{k^´σ^´}\biggl(\frac{1}{2π}\biggr)^3\int e^{-i(k-k^´)・r}d^3r-\hat{a}^\dagger_{kσ}\hat{a}^\dagger_{k^´σ^´}\biggl(\frac{1}{2π}\biggr)^3\int e^{-i(k+k^´)・r}d^3r\biggr] d^3k\ d^3k^´$
$=\displaystyle\frac{1}{2}\int\int\sum^2_{σ=1}\sum^2_{σ^´=1}\frac{ℏ}{2ε_0μ_0}\sqrt{\frac{1}{ω_kω_k^´}}[(k・k^´)(e_{kσ}・e_{k^´σ^´})-(k・e_{k^´σ^´})(k^´・e_{kσ})]$
$\displaystyle \biggl[-\hat{a}_{kσ}\hat{a}_{k^´σ^´}δ(k+k^´)+\hat{a}_{kσ}\hat{a}^\dagger_{k^´σ^´}δ(k-k^´)
+\hat{a}^\dagger_{kσ}\hat{a}_{k^´σ^´}δ(k-k^´)-\hat{a}^\dagger_{kσ}\hat{a}^\dagger_{k^´σ^´}δ(k+k^´)\biggr] d^3k\ d^3k^´$
$=\displaystyle\frac{1}{2}\int\sum^2_{σ=1}\frac{ℏ}{2ε_0μ_0}\frac{1}{ω_k}k^2
\displaystyle \biggl[-\hat{a}_{kσ}\hat{a}_{-kσ}+\hat{a}_{kσ}\hat{a}^\dagger_{kσ}
+\hat{a}^\dagger_{kσ}\hat{a}_{kσ}-\hat{a}^\dagger_{kσ}\hat{a}^\dagger_{-kσ}\biggr] d^3k$
$=\displaystyle\frac{1}{2}\int\sum^2_{σ=1}\frac{ℏω_k}{2}
\displaystyle \biggl[-\hat{a}_{kσ}\hat{a}_{-kσ}+\hat{a}_{kσ}\hat{a}^\dagger_{kσ}
+\hat{a}^\dagger_{kσ}\hat{a}_{kσ}-\hat{a}^\dagger_{kσ}\hat{a}^\dagger_{-kσ}\biggr] d^3k$
※$(A×B)(C×D)=(A・C)(B・D)-A・D)(C・B)、c^2=\frac{1}{ε_0μ_0}、ω^2=c^2k^2$