$\displaystyle\hat{U}\,\ket{n}_A\ket{0}_B \displaystyle=\hat{U}\frac{1}{\sqrt{n}}\hat{a}^{\dagger{n}}_A\ket{0}_A\ket{0}_B$
$\displaystyle=\frac{1}{\sqrt{n!}}\hat{U}\,\hat{a}^{\dagger{n}}_A\,\hat{U}^\dagger\ket{0}_A\ket{0}_B$
$\displaystyle\biggl( \hat{a}^\dagger\ket{n}=\sqrt{n+1}\ket{n+1} ∴ \ket{n}=\frac{1}{\sqrt{n!}}\hat{a}^{\dagger{n}}\ket{0} \biggr)$
$\displaystyle=\frac{1}{\sqrt{n!}}\hat{U}\,\hat{a}^{\dagger}_A\,\hat{U}^\dagger\hat{U}\,\hat{a}^{\dagger}_A\,\hat{U}^\dagger・・・\hat{U}\,\hat{a}^{\dagger}_A\,\hat{U}^\dagger\hat{U}\,\hat{a}^{\dagger}_A\,\hat{U}^\dagger\ket{0}_A\ket{0}_B$
$\displaystyle=\frac{1}{\sqrt{n!}}(\hat{U}\,\hat{a}^{\dagger}_A\,\hat{U}^\dagger)^n\ket{0}_A\ket{0}_B$
$\displaystyle=\frac{1}{\sqrt{n!}}(\hat{a}^{\dagger}_A cos\frac{π}{4}+\hat{a}^{\dagger}_B sin\frac{π}{4})^n\ket{0}_A\ket{0}_B$ $\biggl( $
$\displaystyle
e^{-iθ\hat{L}}
\begin{bmatrix}
\hat{a}_A \\
\hat{a}_B \\
\end{bmatrix}
e^{iθ\hat{L}}
=\begin{bmatrix}
cos\frac{θ}{2} & sin\frac{θ}{2}\\
-sin\frac{θ}{2} & cos\frac{θ}{2}\\
\end{bmatrix}
\begin{bmatrix}
\hat{a}_A \\
\hat{a}_B \\
\end{bmatrix}$
$ ,\displaystyle θ=\frac{π}{2}$ $ \biggr)$${}^※$
$\displaystyle=\frac{1}{\sqrt{n!}}\sum_{k=0}^n {}_nC_k \biggl(\frac{1}{\sqrt{2}}\biggr)^k\biggl(\frac{1}{\sqrt{2}}\biggr)^{n-k}\hat{a}^{\dagger{k}}_A \, \hat{a}^{\dagger{n-k}}_B\ket{0}_A\ket{0}_B$
$\displaystyle\biggl( (a+b)^n=\sum_{k=0}^n {}_nC_k a^{n-k} b^k \biggr)$
$\displaystyle=\sum_{k=0}^n\sqrt{\frac{1}{k!(n-k)!}}\biggl(\frac{1}{\sqrt{2}}\biggr)^n\ket{k}_A\ket{n-k}_B$